Physical Properties

A **physical property** is any property of an object that can be measured without chemically changing the object (by changing its chemical or atomic structure). There are two types of physical properties: intensive and extensive.

An **intensive** physical property does not depend on how much of the object there is. For example, a small rock will be just as hard as a large rock. Thus, hardness is an intensive physical property.

An **extensive** physical property changes depending on how much of the object there is. For example, a small rock weighs less than a large rock. Thus, volume is an extensive physical property.

Examples of Physical Properties

- area
- boiling point
- brightness
- brittleness
- color
- concentration
- density
- ductility
- electric charge
- electrical conductivity

- flexibility
- flow rate
- fluidity
- frequency
- hardness
- length
- location
- luster
- malleability
- mass
- melting point

- pressure
- solubility
- reflectivity
- state
- strength
- temperature
- thermal conductivity
- velocity
- viscosity
- volume

Chemical Properties

A **chemical property** is any property of an object that can only be observed by means of a chemical reaction. This is different from physical properties, because these can only be observed when a substance's chemical structure is being changed.

Chemical properties can be used to identify an unknown substance or to separate it from other substances.

Examples of Chemical Properties

- reactivity
- toxicity
- flammability

SC10F Mr. Smith

Characteristic Properties

A **characteristic property** is a chemical or physical property that can be used to identify a substance.

The characteristic properties of a substance are always the same, whether the sample you are observing is large or small.

Examples of Characteristic Properties

- boiling point
- condensing point
- density
- melting point
- solubility

SC10F Mr. Smith

Physical Changes

Physical changes occur when an object undergoes a change that does not change their chemical nature (does not change what the substance is). A physical change involves a change in physical properties, such as shape, size, color, volume, mass, weight, taste, smell, and density.

An example of a physical change is making a baseball bat. A piece of wood is carefully crafted into a shape that will allow the batter to best apply force on the ball. Even though the wood has changed shape, it is still wood. Its chemical nature has not changed.

Chemical Changes

Chemical changes occur when an object or substance is changed in such a way that it becomes a different substance. These types of changes typically occur during chemical reactions. When a chemical reaction occurs, the atoms are rearranged and combine to form new substances.

Chemical changes happen all the time.

Examples of Chemical Changes

- burning
- decomposition
- neutralization (mixing an acid and a base)
- photosynthesis
- cooking
- oxidation (rusting or tarnishing)
- ripening

Evidence of a Chemical Change

- production of an odor
- change of color
- change in temperature
- change of form (e.g. burning paper)
- light, heat, or sound is given off
- formation of a gas (often appearing as bubbles)
- formation of a precipitate (mixing 2 liquids and a solid is produced)
- decomposition of organic matter

SC10F Mr. Smith